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Quenched complexity of the mean-fieldp-spin spherical model
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Abstract. We consider thep-spin spherical spin-glass model in the presence of an external
magnetic field as a general example of a mean-field system where a one-step replica symmetry
breaking (1-RSB) occurs. In this context we compute the complexity of the Thouless–Anderson–
Palmer states, performing a quenched computation. We find what the general connection is between
this method and the standard static 1-RSB one, formulating a clear mapping between the parameters
used in the two different calculations. A dynamical analysis of the model confirms the validity of
our results.

1. Introduction

Two different sets of results can be obtained when studying a statistical model. The first set is
given by a static (thermodynamical) analysis of the system, while the second one is obtained
from a dynamical approach (e.g., Langevin dynamics). In the case of disordered models as
spin glasses, these two sets of results are not generally connected in a straightforward way. The
reason for this is that spin glasses always exhibit an out-of-equilibrium dynamical behaviour,
which, at least at the mean-field level, is believed to be related to the presence of many
metastable states (whether metastability is relevant in finite-dimensional disordered systems
is still an open issue [1]).

However, there is a striking correspondence between certain types of dynamical scenarios
and their specific static counterparts. In other words, some particular dynamical results are
always associated with the same set of static results and vice versa. For instance, in the
context of the static replica symmetry breaking (RSB) scheme for mean-field spin glasses [2],
we always find a dynamical asymptotic energy larger than the static one in models which
are solved by a one-step solution (1-RSB), while the two energies are the same in models
statically solved by a full RSB solution [3–7]. This fact suggests that there must be some kind
of underlying general physical explanation for these connections.

There is a third approach that can be used in the study of disordered systems when many
states are present and which has the advantage of catching some of the results of both the statics
and the dynamics. This approach is purely entropic, that is it just deals with the number of
states of the system, disregarding their thermodynamical Boltzmann weights. In this context,
the interesting quantity is the so-calledcomplexity, defined as the density of the logarithm
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of the number of states. The complexity as a function of the free energy density provides
information on the structure of the phase space. It enables us to recover the usual static results,
but it also takes into consideration the metastable states relevant for the dynamics [8–11].

In the context of mean-field spin glasses the complexity can be calculated in various ways.
A first and intuitive method consists in simply computing the number of local minima of some
mean-field free energy, a function of the local magnetizations. Another possibility is to obtain
the complexity by means of an analysis which makes use of constrained systems [12,13]. Each
of these methods has advantages and limits. In this paper we shall concentrate on the first one.
The reason is that this method can be extended to the analysis of stationary points different
from minima [14]. A deep knowledge of the whole free energy landscape, including saddles
of various order, is of crucial importance to understand the dynamical behaviour of the system,
since in this context it should be possible to find an explanation for the relation we stated above
between statics and dynamics [15,16].

As a first step in this direction it is necessary to understand how general and feasible this
entropic approach is. Up to now it has given exact results only in a restricted set of mean-
field models of spin glasses, i.e. results analytically consistent with the static and dynamical
ones [10,17–19]. Yet, the physical interpretation of the parameters used has often been obscure.
In particular, for what concerns systems with 1-RSB solution, the entropic approach has been
used only in cases where the states are uncorrelated, so that an annealed computation has
always been performed. In this kind of model there is a band of free energy densities where
the number of states is exponentially large in the size of the system. It has been found that
the static and the dynamic free energies (the last being defined as the free energy of the states
reached by the dynamics) are equal to the lowest and highest edges of this band, respectively.
We believe this to be true in any 1-RSB model. Yet, in order to find out how general these results
are, it is not sufficient to consider this restricted set of models. Indeed, due to the absence of
correlation among the states, these models have some particular features, which make them a
special subset of the 1-RSB class. For instance, the static and dynamical transitions are both
discontinuous, which is not a general property of 1-RSB models.

In this paper we extend the entropic calculation to the simplest model which displaysall
the general features of the 1-RSB class, namely thep-spin spherical model in the presence of
an external magnetic field. This model is a very general paradigm of 1-RSB systems, since as a
function of temperature and field it displays all the possible characteristics of these systems [3]†.
From a static point of view, it has both a continuous and discontinuous transition in the overlap
order parameter. From a dynamical point of view, it presents an off-equilibrium behaviour
with a modified fluctuation-dissipation theorem, it has an asymptotic dynamical energy greater
than the static one, and a non-vanishing asymptotic magnetization [16]. Moreover, while the
p-spin with zero field is the only one-step model for which a particularly simple solution for
the correlation and the response function holds, this does not happen if a magnetic field is
present, the solution being, in this case, of the more complicated form common to the whole
class of 1-RSB systems [5]. It is believed that 1-RSB systems are good mean-field candidates
for structural glasses [16]. This is one of the reasons why these systems have recently received
so much attention.

We perform the calculation of the complexity following the general method of [9]. In
this context we are able to state in the most general way which is the physical interpretation
of all the parameters introduced in the entropic calculation. Moreover, we find a one to one
mapping between all these parameters and the ones of the 1-RSB static solution, giving a

† Another model displaying all the 1-RSB features is that of a manifold in a short-range correlated random potential
[5,20].
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physical interpretation of this relation, which was until now rather unclear.
The paper is organized in the following way. In section 2 we define the model and compute

the complexity. In the next section we discuss the results and find the relation with the static
1-RSB calculation. In section 4 we study the behaviour of the complexity as a function of
temperature and magnetic field. In section 5 we perform a dynamical analysis of the model
and compare it with the results coming from the complexity. Finally, we state our conclusions
in section 6.

2. Model and complexity

Thep-spin spherical model is defined by the Hamiltonian,

H(s) = −
∑

i1<···<ip
Ji1...ip si1 . . . sip − h

∑
i

si . (1)

The spinss are real variables satisfying the spherical constraint
∑

i s
2
i = N , whereN is the

size of the system. The couplingsJ are Gaussian variables with zero mean and variance
p!/2Np−1 andh is an external magnetic field [3, 21, 22]. In the context of the Thouless–
Anderson–Palmer (TAP) approach [8], it is possible to formulate a set of mean-field equations
for the local magnetizationsmi = 〈si〉. A mean-field free energy densityfTAP, function of the
magnetizationsmi , was introduced for this model in [11],

fTAP = − 1

N

∑
i1<···<ip

Ji1...ipmi1 . . . mip −
h

N

∑
i

mi − 1

2β
log(1− q) + g(q) (2)

where q = N−1∑
i m

2
i is the self-overlap related to the magnetizationm and g(q) =

− β

4 [(p − 1)qp − pqp−1 + 1] is the Onsager reaction term (for a derivation of the TAP free
energy see also [10, 17]). The minimization of (2) with respect to the{mi} gives the TAP
equations of the system,

Tk(m) ≡ −p
∑

i2<···<ip
Jk,i2...ipmi2 . . . mip − h + 2mk

(
1

2β(1− q) + g′(q)
)
= 0. (3)

In the low-temperature phase these equations admit many possible solutions, corresponding
to different stationary points of the mean-field free energy (2). The minima among all the
stationary points can be identified with stable and metastable states of the system.

Thecomplexity6(f ) is defined in the following way,

6(f ) ≡ lim
N→∞

1

N
logN (f ) (4)

whereN (f ) is the number of localminimaof the free energy (2), that is, the number of states
of the system with free energy densityf . We average the logarithm ofN since we expect
this to be the extensive quantity. In order to perform this average it is necessary to introduce
replicas. However, when the external fieldh is set equal to zero, the correct ansatz for the
overlap matrix turns out to be symmetric and diagonal. This is equivalent to directly averaging
the numberN of solutions (annealed average) [10]. The physical reason for this is that when
h = 0 there is no preferred direction in the phase space sphere, thus the typical states are
orthogonal to each other and their mutual overlap is zero. On the other hand, whenh 6= 0 there
is a migration of the states towards the direction of the magnetic field and their mutual overlap
is different from zero. In this case the quenched average has to be performed. Anyhow, as it is
shown below, due to the particular nature of the calculation, the correct ansatz for the overlap
matrix is simpler than the 1-RSB used in the statics [3].
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In order to compute6 we use the replica trick,

logN = lim
n→0

1

n
log

n∏
a=1

N a (5)

where eachN a is given by

N a(f ) =
∫
Dma

N∏
k=1

δ(Tk(ma))| detA(ma)|δ(fTAP(m
a)− f ) (6)

andAkl(m) = ∂k∂lfTAP(m) is the Hessian of the TAP free energy evaluated in a particular
solution m. In what follows the symbolDx refers to the integration over all the site
variables,Dx = dx1 . . .dxN . Let us introduce the following Grassmann representation for the
determinant,

detA(ma) =
∫
Dψ̄aDψa exp[−ψ̄aA(ma)ψa] (7)

and a bosonic representation for the delta functions,
N∏
k=1

δ(Tk(ma)) =
∫
Dλa exp(−λaT (ma)) (8)

δ(fTAP(m
a)− f ) =

∫
dωa exp[−ωa(fTAP(m

a)− f )] (9)

where the integrals over the variablesλ andω are on the imaginary axis. The sums over site
indices are always understood whenever site dependent quantities are mutually multiplied.
In the rest of the calculation we shall disregard the modulus of the determinant in (6). This
approximation is safe for zero magnetic field, as long as we are counting stationary points with
a givenfixedfree energy density [14]. Indeed, it can be shown that in this way only the minima
of fTAP are actually taken into consideration [14]. We assume this to also hold withh 6= 0.
We then have,

6(f ) = lim
n→0

1

nN
log

∫
DmDλDψ̄Dψ dω exp[−SJ (m, λ, ψ̄, ψ, ω)] (10)

where the actionSJ is given by

SJ =
n∑
a=1

[λaT (ma) + ψ̄aA(ma)ψa +Nωa(fTAP(m
a)− f )]. (11)

The average over the disorder generates couplings between variables with different replica
indices. It is convenient to express these terms by means of the following overlap matrices,
which can be introduced in the usual way [3,10,14],

NSab = mamb NLab = λaλb NRab = maλb NTab = −ψ̄aψb. (12)

In terms of the overlap matrices (12) we have,

6(f ) = lim
n→0

1

nN
log

∫
DSDLDRDT dω exp[−NS(S, L,R, T , ω)] (13)

where the effective action is given by

−S = p

4

∑
ab

LabS
p−1
ab +

p(p − 1)

4

∑
ab

(R2
ab − T 2

ab)S
p−2
ab +

h2

2

∑
ab

Lab

+
∑
a

2

[
g′(Saa) +

1

2β(1− Saa)
]
(Taa − Raa)− log detT +

1

2
log detS
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+
1

2
log det(RT S−1R − L) +

p

2
ω
∑
ab

RabS
p−1
ab + h2ω

∑
ab

Rab

+nfω − ω
∑
a

[
g(Saa)− 1

2β
log(1− Saa)

]
+

1

4
ω2
∑
ab

S
p

ab +
h2

2
ω2
∑
ab

Sab.

(14)

We have assumedωa = ω since it depends only on one replica index. As usual, we compute
the integral (13) by means of a saddle point approximation, so that,

6(f ) = lim
n→0

1

n
Extφ [−S(f, φ)] (15)

whereφ stands for all the variational parameters,S,L,R, T andω.
In order to simplify the saddle point equations for the overlap matrices we make use of

the fact that action (11) is invariant under the following Becchi–Rouet–Stora–Tyutin (BRST)
transformation [23–25],

mai → mai + εψa
i ψ̄a

i → ψ̄a
i − ελai λai → λai − ωaεψa

i

ψa
i → ψa

i ωa → ωa
(16)

whereε is a constant Grassmann parameter. As a consequence, for each operatorO, which
is a function of the variablesma, λa, ψ̄a, ψa andωa, we have that〈δO〉 = 0, whereδO is
the variation ofO under (16) and the brackets indicate an average over the measure defined
by the actionSJ . If we consider the two casesO = mbψ̄a andO = λbψ̄a, we immediately
get the equations〈ψ̄aψb〉 = −〈mbλa〉 and〈ωψ̄aψb〉 = 〈λaλb〉. From the definitions (12) we
then obtain the following relations for the saddle point values of the overlap matrices,

Rab = Tab Lab = −ωTab (17)

which simplify a lot of the calculation. At this point we have to choose an ansatz for the
overlap matrices in order to solve the saddle point equations. Let us consider first the matrix
S, which has an explicit physical meaning. From the definition (12) we see that the diagonal
elementSaa corresponds to the self-overlap of an individual TAP solution. On the other hand
the off-diagonal elementsSab correspond to mutual overlaps between different TAP solutions.
Given this we assume for the matrixS the simplest form consistent with this interpretation,
that is a symmetric matrix,

Sab = (s1− s0)δab + s0. (18)

In the saddle point,s1 ands0 represent respectively the self-overlap and the mutual overlap of
the states with free energy densityf . As discussed above, in absence of the magnetic fields0
vanishes, the matrixS is diagonal and the quenched average coincides with the annealed one.
On the other hand in the presence of the field we expect a values0 6= 0. Consistently with the
ansatz used forS we set,

Tab = (t1− t0)δab + t0. (19)
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Using the BRST relations (17) and the above form for the matricesS andT , we can reduce
the saddle point equations to the following five coupled equations,

0= −ω
(p

2
s
p−1
1 + h2

)
− p(p − 1)

2
t1s

p−2
1 − 1

z
+

1

z2
(ωs0 + t0) + 2g′(s1) +

1

β(1− s1)
0= ω

(p
2
s
p−1
0 + h2

)
+
p(p − 1)

2
t0s

p−2
0 − 1

z2
(ωs0 + t0)

0= −ω
(p

2
s
p−1
1 + h2

)
+

1

t1− t0 −
t0

(t1− t0)2 −
1

z
+

1

z2
(ωs0 + t0)

0= ω
(p

2
s
p−1
0 + h2

)
+

t0

(t1− t0)2 −
1

z2
(ωs0 + t0)

0= p

4
(t1s

p−1
1 − t0sp−1

0 ) + ω

(
1

2
(s
p−1
1 − sp−1

0 ) + h2(s1− s0)
)

− s1
2z

+
ωs0 + t0

2z2
(s1− s0) + f − g(s1) +

1

2β
log(1− s1)

(20)

wherez = [ω(s1 − s0) + t1 − t0] andg(s) is the Onsager term of (2). It is easy to verify that
for h = 0 these equations give the standard result of [10].

3. Connection with the statics

We are now in the position to compute the complexity6 in every point of the plane(T , h)
and, in particular, in the regime where the statics of the model displays a 1-RSB solution (low
temperatures and fields) [3]. As we will show below, our results clarify the relation between
the present entropic approach and the usual static one.

First we note that equations (20) give, after some algebra, the relations,

t0 = 0 t1 = β(1− s1). (21)

The physical interpretation of these equations is very simple. The saddle point value of the
matrixTab is related to the expectation value〈ψ̄aψb〉 (see equation (12)) and from (7) it is clear
that this expectation value is nothing more than the average of the matrixA−1, which is by
definition the inverse of the Hessian of the TAP free energy. Therefore, the parametert1 can be
interpreted as the inverse curvature of the free energy in a typical state with free energyf . On
the other hand, sinces1 is the self-overlap of this state,β(1−s1) is the the magnetic susceptibility
χ . In this way equation (21) gives the expected static relation between the fluctuationt1 and
the dissipationχ of an equilibrium system, consistently with the calculations of [9,19].

Due to equation (21) we are left with only three parameters,s1, s0 andω. As we have
seen, the physical interpretation ofs1 ands0 is straightforward, while this is still not the case
for ω. In order to better understand what the role ofω is we note that in the saddle point we
have (see equations (15) and (14)),

d6(f )

df
= ω(f ). (22)

If we call f0 the ground state free energy, defined by6(f0) = 0, the number of states having
extensive free energyNf = Nf0 + δf , is

N (δf ) ∼ e6
′(f0) δf = eω(f0) δf δf ∼ O(1). (23)

This equation shows thatω(f0) plays the same role as the static parameterx, which represents
the breaking point in the 1-RSB scheme [10,26,27]. Given this, it is clear that, for each value
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of (T , h), the 1-RSB computation and the present one must map one into the other with the
following rule:

f0 = fRSB⇒ s1(f0) = q1 s0(f0) = q0 ω(f0) = βx (24)

wherefRSB is the static 1-RSB equilibrium free energy andq1, q0 and x are the 1-RSB
parameters of the static computation (respectively, self-overlap, overlap and breaking point) [3].
It is possible to verify analytically that the relations (24) are fulfilled by our saddle point
equations: the complexity is zero at the static free energyfRSB and here the equations for the
parameterss1, s0 andω reduce exactly to the static equations forq1, q0 andβx.

In this way we have shown that, despite the symmetric form of the overlap matrices used
in our calculation (see equations (18) and (19)), the complexity describes the statics of the
model with the same degree of accuracy as the 1-RSB calculation. This point has always
been rather mysterious, since it was not evident why the two approaches should give the same
results. Now the explanation is clear. At the ground state free energy densityf0 the two
calculations simply write the same quantities in different ways. In the RSB approach the self-
overlapq1 of the states is introduced, while for the complexity it is natural to deal with the
curvature of the states, because of the presence of the Hessian. Yet, these two quantities are,
as we have seen, trivially related. Moreover, the breaking pointx, which is typical of the RSB
calculations, has its counterpart in the parameterω, which has a very simple interpretation in
the context of the complexity, being just the derivative of6 with respect to the free energy.
Finally, the overlap matrix in the two cases has a slightly different physical meaning and this is
why different ansatz are taken for them: in the RSB approach this matrix refers to the overlap
betweenconfigurations, while in the present context it refers to the overlap betweenstates.
Due to this, the present approach hasone less stepof replica symmetry breaking, compared
with the standard static one. Clearly, the price we have to pay for having a symmetric overlap
matrix is the knowledge of the explicit form of the TAP free energy. Interestingly enough, the
parameterx drops from the symmetric overlap matrix, to reappear in disguise asω. We believe
that all the relations we found are valid for all 1-RSB models. The reason why they have not
been recognized in the past is twofold. In the simple case ofh = 0, due to the homogeneity
of the model, the complexity does not depend on the temperature, so that the calculation can
be carried out atT = 0 [10], wheres1 = 1 and equation (21) is singular. Besides, when
the simpler annealed computation was performed many parameters were integrated out for
convenience, so that relations (21) and (24) were not detected.

We stress that what is stated above only holds forf = f0, where the complexity is zero.
On the other hand, increasingf provides information on the whole spectrum of the states.

For the sake of completeness, we would like to recall that a different method exists by
which the complexity can be computed [12,13]. This method relates the complexity6(f ) to
the static free energy ofr real replicas of the system in the following way:6(r) = βr2 ∂Fr

∂r
and

f (r) = ∂[rFr ]
∂r

, whererFr is the free energy density of ther coupled real replicas in the limit
where the coupling goes to zero. To obtain6 it is therefore necessary to computeFr . For
systems with 1-RSB one usually assumes a one step of breaking also for the overlap matrix
related toFr , with a fixed breaking parameter equal tor and two variational parametersq1 and
q0 [12, 19]. In this case the expression ofFr as a function ofq1, q0 andr is analogous to the
usual static one, except for the fact that it has to be minimized with respect toq0 andq1, but
not with respect tor. With these assumptions it is possible to obtain an explicit expression of
6 in terms off , q1, q0 andr, whereq1 andq0 are given by their saddle point values, whiler
is fixed by the above equation forf (r). If we now compare this expression for6 with the one
coming from our calculation, we find that they are perfectly consistent: the equations forq1,
q0 andr are exactly the same as the ones fors1, s0 andβω, and6(r) coincides with (15).
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Figure 1. The complexity6(f ) as a function of the free energy densityf for T = 0.2, h = 0.2
andp = 3. The minimum value6 = 0 occurs atf0 = fRSB= −0.8322. The maximum value is
atfth = −0.8213, which is the free energy density of the states reached by the dynamics.

Finally, we note that our results are consistent with the analysis recently performed in [28],
where a thermodynamical description of the glassy transition for this model is presented.

4. Behaviour of the complexity in the temperature and field plane

From equations (14), (15) and (21) we obtain the explicit expression of the complexity

6(f ) = p

4
ωt1s

p−1
1 +

h2

2
ωt1− 1

2
log t1 +

1

2
logz +

1

2

ωs0

z

+ω

(
f − g(s1) +

1

2β
log(1− s1)

)
+
ω2

4
(s
p

1 − sp0 ) +
h2

2
ω2(s1− s0) (25)

with t1 = β(1− s1) ands1, s0 andω given by the saddle point equations (20).
Let us now analyse the behaviour of the complexity in the(T , h) plane. For small enough

values of temperature and field many pure states are present, therefore we expect the complexity
to be different from zero in a finite range of free energy densities. Actually, this is what happens.
In figure 1 we show6(f ) as a function off at fixed small values ofT andh: 6 is defined
between a minimum free energy densityf0 where it is zero, and a threshold free energy density
fth where it takes its maximum value. Since for high values of temperature and field only one
(finite magnetization) paramagnetic state is present [3], we expect that by increasingT andh
the number of existing states progressively decreases until one single state is left. Indeed, if we
look at6(f ) at a fixedh, but at different values ofT , we find that the interval of free energies
[f0, fth] where6 is defined, becomes smaller and smaller as the temperature is increased, and
finally it shrinks to a single point, with6 = 0, at a certain critical temperatureTc(h). For
T > Tc(h), 6(f ) is defined only in one point, where6 = 0, andf here coincides with the
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Figure 2. The full curve corresponds to the critical temperature lineTc(h) where6 reduces to a
point and the RSB static solution disappears, forp = 3. The dotted curve corresponds to the static
transition line. The two curves are coincident for fieldsh > h? = 0.408. The static transition is
continuous forh > h?, and discontinuous forh < h?. The region C is the region of coexistence of
the RS and RSB solutions.

replica symmetric static free energy, that is, the free energy of the single paramagnetic state.
In figure 2 the lineTc(h) is shown in the(T , h) plane†. This line separates the region of the
plane where only one pure state exists (T > Tc(h)) from the region where many pure states are
present (T < Tc(h)) and therefore we identify it as thegeometricaltransition line. We note that
this line is monotonically decreasing with the field, so that there is no ‘re-entrance’ [29]. We
find that the geometrical transition line coincides with the line where the RSB static solution
ceases to exist [3]. This indicates that, as in the case withh = 0 [11], the states with the
lowest free energy density are the last to disappear. We note that the critical lineTc(h) does
not coincide in the whole plane with the transition line given by the statics (dotted curve
in figure 2) [3]. Indeed the two lines only coincide forh > h?, where the static transition is
continuous (q1 = q0 at the transition), while they are strictly different forh < h? (discontinuous
transition) [3]. This is consistent with the different physical scenarios corresponding to the
continuous and the discontinuous transitions. In the first case, the transition corresponds to
different states which merge into a unique ergodic component, so above the transition line
only one state is present. In the second case, many pure states with finite complexity exist
both above and below the transition line, and the transition corresponds to the point where
the lowest states (f = f0 = fRSB) become the relevant ones from a thermodynamical point
of view. In this regime, just above the static transition line equilibrium is given by a class of
states with finite complexity. In the replica scheme the right solution is the replica symmetric
one, which corresponds to a bunch of exponentially numerous different pure states [10, 11].

† We thank David Sherrington for first suggesting the existence of such a line in the phaseh < h?.
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Above the geometrical transition line all the states but the paramagnetic one disappear and the
RS solution corresponds in this case to a single ergodic component.

5. Threshold energy and dynamical behaviour

As mentioned in the previous section, at fixed temperature and field, the complexity is defined
within a certain range [f0, fth] of free energy densities. It is well known that ath = 0 in the
low-temperature region the states withf = fth are the dynamically relevant ones, that is, their
energy density coincides with the asymptotic value of the dynamical energy [4,11,22,30–32].
In this section we show that this also holds at non-zero values of the field, as expected. In order
to check this point we perform a dynamical analysis of the model withh 6= 0 and compare the
dynamical asymptotic energy with the energy of the threshold states of the complexity. The
equivalence between the threshold and dynamical energies can be confirmed numerically for
any temperature and field, but for the sake of simplicity we will only quote the analytical results
at zero temperature and small field. If we take the limitT → 0 of equations (20) and expand it
for small fields we get the following expression for the energy density of the threshold states,

Eth = −
√

2(p − 1)

p

(
1 +

(p − 1)

p
h2

)
+ O(h3) T → 0. (26)

Let us now compute the asymptotic dynamical energy [4] (for a more complete dynamical
analysis in similar cases see [5,29]). The relaxational dynamics for the system is given by the
Langevin equations,

ṡi (t) = −β δH

δsi(t)
− y(t)si(t) + νi(t) (27)

wherey(t) is a Lagrange multiplier which enforces the spherical constraint, andνi(t) is a
Gaussian noise with zero mean and variance 2. The dynamics is completely determined by the
equations for the two-time correlation and response functions,C(t, t ′) = 1

N

∑
i 〈si(t)si(t ′)〉

andG(t, t ′) = 1
N

∑
i
∂〈si (t)〉
∂hi (t ′)

, and for the magnetizationm(t) = 1
N

∑
i 〈si(t)〉. These equations

are [4,33],

∂tC(t, t
′) = −y(t)C(t, t ′) +µ

∫ t ′

0
dt ′′ Cp−1(t, t ′′)G(t ′, t ′′)

+µ(p − 1)
∫ t

0
dt ′′G(t, t ′′)Cp−2(t, t ′′)C(t ′′, t ′) + βhm(t ′) (28)

∂tG(t, t
′) = −y(t)G(t, t ′) + δ(t − t ′) +µ(p − 1)

∫ t

t ′
dt ′′G(t, t ′′)Cp−2(t, t ′′)G(t ′′, t ′) (29)

ṁ(t) = −y(t)m(t) +µ(p − 1)
∫ t

0
dt ′′G(t, t ′′)Cp−2(t, t ′′)m(t ′′) + βh (30)

whereµ = pβ2/2. Another equation fory(t) is obtained by self-consistently exploiting the
spherical constraint,

y(t) = 1− pβE(t)− (p − 1)βhm(t) (31)

whereE(t) = N−1〈H(t)〉 is the dynamical energy density. In the limitt → ∞ we have the
following expression for the asymptotic dynamical energyE∞ = lim t→∞ E(t) (see also [32]),

E∞ = 1− y∞
pβ

− p − 1

p
hm∞ (32)
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wherey∞ andm∞ are the corresponding asymptotic values for the Lagrange multiplier and
the magnetization. In order to computeE∞ we then have to findy∞ andm∞ by solving
asymptotically the set of dynamical equations (28)–(30).

In [4] it has been shown that for large times there are two regimes for the correlation
and response functions. The first regime corresponds to time separationsτ = (t − t ′) such
that τ/t → 0, where the equilibrium fluctuation dissipation theorem (FDT) holds, so that
GFDT(τ ) = −∂τCFDT(τ ). The second regime, known as the aging regime, corresponds to
τ/t ∼ O(1). Here time translation invariance is violated and FDT cannot be applied. The
response function is related to the correlation function byGag(t, t

′) = xd∂t ′Cag(t, t
′), where

xd parametrizes the violation of FDT. The asymptotic values for the correlation functions in
both regimes are,

lim
τ→∞CFDT(τ ) = lim

t ′/t→1
Cag(t, t

′) = q lim
t ′/t→0

Cag(t, t
′) = q0. (33)

In the limit τ →∞, the equation forCFDT(τ ) yields a relation betweeny∞ andq which reads,

y∞ = (1− q)−1 +µ(1− qp−1). (34)

If we take the limitt ′/t → 1 in the equation forGag(t, t
′) we obtain the equation forq,

µqp−2(1− q)2 − (p − 1)−1 = 0. (35)

It is now clear that neitherq nory∞ depend on the field. Therefore, all the dependence of the
energy on the field is given by the second term of equation (32), while the first term corresponds
to the asymptotic energy in zero field [4].

To obtain the asymptotic magnetizationm∞ we need to solve the coupled equations for
m∞, q0 andxd coming from equation (30), and from the limitst ′/t → 0 andt ′/t → 1 of the
equation forCag(t, t

′),

0= −y∞m∞ +µ[1− qp−1(1− x)]m∞ + βh (36)

0= −y∞q0 +µ(1− q)qp−1
0 +µq0(1− qp−1) +µxd(q

p−1− qp−1
0 ) + βhm∞ (37)

0= −y∞ + 1 +µ(x − 1)qp +µ(1− xqp0 ) + βhm∞. (38)

For small fields we are able to find the solution analytically, which has the following simple
form,

m∞ = (p − 1)(1− q)βh + O(h2) (39)

q0 = O(h2) (40)

xd = (p − 2)(1− q)
q

+ O(h2). (41)

From here we obtain the dynamical energy,

E∞ = −β
2

[
1− qp

(
1− (p − 2)(1− q)

q

)]
− (p − 1)2(1− q)

p
h2 + O(h3). (42)

In the limitT → 0 it can be seen from equations (35), (42) and (26) thatE∞ = Eth. As already
said, it is possible to check numerically that these two energies are the same in the whole plane
(T , h).

6. Conclusions

In this paper we have computed the complexity6 of the states in a very general 1-RSB
mean-field model for disordered systems, namely, thep-spin spherical model in presence of
an external magnetic field. We stress that the introduction of the magnetic field changes the
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features of this model dramatically. First, the homogeneity of the zero-field case is lost, and
together with it also the non-chaoticity of the TAP solutions and consequently the possibility to
exclude the temperature from the computation of the complexity [10,11]. Secondly, by varying
field and temperature the model exhibits both a discontinuous and continuous transition, while
only the first kind is found ifh = 0. Furthermore, as previously pointed out, the field introduces
a correlation among states, which forces us to perform a quenched computation. For this reason
we had to adopt a particular ansatz and find its physical grounding, which made the connections
with the static approach clearer. Moreover, the calculation becomes much more tricky from
a technical point of view. Similarly, while the dynamics in zero field turns out to be a very
special case in the class of 1RSB models, on the other hand whenh 6= 0 one obtains much
more general and difficult dynamical equations [5].

In our analysis we find a region of the(T , h) plane where6 is a monotonic increasing
function of the free energy densityf , defined in an interval [f0, fth]. The lower band edgef0,
defined by6(f0) = 0, is always equal to the free energy density of the static 1-RSB solution,
that is,f0 = fRSB. On the other hand, the threshold valuefth gives the free energy density of
the states reached asymptotically by the non-equilibrium dynamical evolution of the system.
Moreover, we find a one-to-one mapping between the equations and the parameters of the
complexity atf = f0 and the ones of the 1-RSB static approach. This shows that the two
calculations are essentially the same, even if the ansatz taken for the overlap matrices seem so
different in the two cases.

We would like to add some further comments on what the main interest of this work is.
There are different methods by which the complexity of a model can be computed [9,12,13].
The one used in this paper is simple and intuitive, since it only counts the number of minima
of the mean-field free energy function. However, from a technical point of view, this method
is far from being straightforward and up to now a clear quenched calculation of the complexity
was lacking. Many efforts have been made in this direction for the Sherrington–Kirkpatrick
model [6], which has a full RSB static solution [19,34–36]. However, in that case neither the
physical meaning of the adopted ansatz nor the eventual consistency of the lower band edge
with the static free energy density were completely satisfying. In this paper, in the context
of a simpler 1-RSB model, we find in a clear way how the quenched computation has to be
performed and what the meaning of the used ansatz is. Therefore, we now believe we have
this method under control.

It would be interesting to use this same method for a deeper analysis of the free energy
landscape. Indeed, it is generally believed that in the dynamics of glassy systems a crucial
role is played not only by the minima of the Hamiltonian, but also by unstable stationary
points [14, 15]. In this context, an entropic computation of stationary points of any nature is
of primary interest. To our knowledge, the only method suitable for such an investigation is
the direct one exposed in this paper.

An entropic analysis of the states is evidently fruitful for models which present a great
number of different pure states, as mean-field models of spin glasses. Whether this is the case
for short range spin glasses is still an open debate†. In any case, looking at the stationary
points of the Hamiltonian to better understand the dynamical behaviour still remains, at least
in principle, a reasonable issue for finite-dimensional systems.

We believe this to be a strong motivation for a better understanding of the present
formalism, as the one we have reached in this paper.

† For recent discussions on this topic, see for example, [37].
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